A conic representation of the convex hull of disjunctive sets and conic cuts for integer second order cone optimization

نویسندگان

  • Pietro Belotti
  • Julio C. Góez
  • Imre Pólik
  • Tamás Terlaky
  • Ted K. Ralphs
چکیده

We study the convex hull of the intersection of a convex set E and a disjunctive set. This intersection is at the core of solution techniques for Mixed Integer Convex Optimization. We prove that if there exists a cone K (resp., a cylinder C) that has the same intersection with the boundary of the disjunction as E , then the convex hull is the intersection of E with K (resp., C). The existence of such a cone (resp., a cylinder) is difficult to prove for general conic optimization. We prove existence and unicity of a second order cone (resp., a cylinder), when E is the intersection of an affine space and a second order cone (resp., a cylinder). We also provide a method for finding that cone, and hence the convex hull, for the continuous relaxation of the feasible set of a Mixed Integer Second Order Cone Optimization (MISOCO) problem, assumed to be the intersection of an ellipsoid with a general linear disjunction. This cone provides a new conic cut for MISOCO that can be used in branch-and-cut algorithms for MISOCO problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disjunctive Conic Cuts for Mixed Integer Second Order Cone Optimization

We investigate the derivation of disjunctive conic cuts for mixed integer second order cone optimization (MISOCO). These conic cuts characterize the convex hull of the intersection of a disjunctive set and the feasible set of a MISOCO problem. We present a full characterization of these inequalities when the disjunctive set considered is defined by parallel hyperplanes.

متن کامل

A complete characterization of disjunctive conic cuts for mixed integer second order cone optimization

We study the convex hull of the intersection of a disjunctive set defined by parallel hyperplanes and the feasible set of a mixed integer second order cone optimization (MISOCO) problem. We extend our prior work on disjunctive conic cuts (DCCs), which has thus far been restricted to the case in which the intersection of the hyperplanes and the feasible set is bounded. Using a similar technique,...

متن کامل

Two-Term Disjunctions on the Second-Order Cone

Balas introduced disjunctive cuts in the 1970s for mixed-integer linear programs. Several recent papers have attempted to extend this work to mixedinteger conic programs. In this paper we study the structure of the convex hull of a two-term disjunction applied to the second-order cone, and develop a methodology to derive closed-form expressions for convex inequalities describing the resulting c...

متن کامل

On sublinear inequalities for mixed integer conic programs

This paper studies K-sublinear inequalities, a class of inequalities with strong relations to K-minimal inequalities for disjunctive conic sets. We establish a stronger result on the sufficiency of K-sublinear inequalities. That is, we show that when K is the nonnegative orthant or the second-order cone, K-sublinear inequalities together with the original conic constraint are always sufficient ...

متن کامل

Mixed integer programming with a class of nonlinear convex constraints

We study solution approaches to a class of mixed-integer nonlinear programming problems that arise from recent developments in risk-averse stochastic optimization and contain second-order and p-order cone programming as special cases. We explore possible applications of some of the solution techniques that have been successfully used in mixed-integer conic programming and show how they can be g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012